Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 249
Filter
1.
Pigment & Resin Technology ; 52(4):490-501, 2023.
Article in English | ProQuest Central | ID: covidwho-20242763

ABSTRACT

PurposeThis study aims to focus on the preparation and characterization of the silver nanowire (AgNWs), as well as their application as antimicrobial and antivirus activities either with incorporation on the waterborne coating formulation or on their own.Design/methodology/approachPrepared AgNWs are characterized by different analytical instruments, such as ultraviolet-visible spectroscope, scanning electron microscope and X-ray diffraction spectrometer. All the paint formulation's physical and mechanical qualities were tested using American Society for Testing and Materials, a worldwide standard test procedure. The biological activities of the prepared AgNWs and the waterborne coating based on AgNWs were investigated. And, their effects on pathogenic bacteria, antioxidants, antiviral activity and cytotoxicity were also investigated.FindingsThe obtained results of the physical and mechanical characteristics of the paint formulation demonstrated the formulations' greatest performance, as well as giving good scrub resistance and film durability. In the antimicrobial activity, the paint did not have any activity against bacterial pathogen, whereas the AgNWs and AgNWs with paint have similar activity against bacterial pathogen with inhibition zone range from 10 to 14 mm. The development of antioxidant and cytotoxicity activity of the paint incorporated with AgNWs were also observed. The cytopathic effects of herpes simplex virus type 1 (HSV-1) were reduced in all three investigated modes of action when compared to the positive control group (HSV-1-infected cells), suggesting that these compounds have promising antiviral activity against a wide range of viruses, including DNA and RNA viruses.Originality/valueThe new waterborne coating based on nanoparticles has the potential to be promising in the manufacturing and development of paints, allowing them to function to prevent the spread of microbial infection, which is exactly what the world requires at this time.

2.
American Journal of Clinical Pathology, suppl 1 ; 158, 2022.
Article in English | ProQuest Central | ID: covidwho-20241384

ABSTRACT

Introduction/Objective Kidney injury has now become one of the known complications following COVID-19 infection and vaccination. Only few cases of minimal change disease following administration of COVID-19 vaccination and infection have been reported. This study was to highlight incidence of minimal change disease following COVID-19 infection or vaccination. Methods/Case Report Case 1:15 year-old female with past medical history of asthma and hypercholesterolemia presented for evaluation of periorbital edema, nephrotic-range proteinuria, hypoalbuminemia, elevated serum creatinine, elevated blood pressures, and hematuria after COVID-19 infection. Renal biopsy after 1 week of infection showed unremarkable glomeruli and negative immunofluorescent stains in glomeruli, and 20-30% fusion of foot processes. The biopsy was consistent with a minimal change disease with features of natural remission (her nephrotic-range proteinuria resolved soon after). Case 2: 18 year-old female with no significant past medical history presented with a chief complaint of generalized swelling, which started around the same time she received her 1st dose of Pfizer COVID vaccine (the 2nd dose 2 months later). She had a nephrotic range proteinuria and hypoalbuminemia, but normal level of serum creatinine. A renal biopsy after 4 months of vaccination showed unremarkable glomeruli by light microscopy, negative immunofluorescent study, but diffuse effacement of foot processes involving more than 80% of the examined loops by electron microscopy. This biopsy findings were consistent with a minimal change disease. Both patients did not receive any treatment before the renal biopsies. Results (if a Case Study enter NA) NA Conclusion Minimal change disease can be a rare complication following COVID-19 infection or Pfizer COVID-19 vaccination, raising a question if there are similar antigens induced by the infection or by the vaccination that trigger the minimal change disease. Further studies are needed to determine the incidence and pathophysiology of minimal change disease either post COVID-19 vaccines or following COVID-19 infections.

3.
International Journal of Applied Pharmaceutics ; 15(Special Issue 1):51-55, 2023.
Article in English | EMBASE | ID: covidwho-20240315

ABSTRACT

Objective: To design an optimal formulation for quercetin and vitamin C nano-phytosome. Method(s): Nano-phytosomes are prepared by the thin layer hydration technique using a 2-level-5-factor design experimental. A total of 32 experimental formulas were used for data analysis. The ratio of quercetin: soy lecithin (X1), the ratio of quercetin: cholesterol (X2), stirring speed (X3), stirring temperature (X4), and stirring time (X5) were used as independent factors, while globule size as a dependent factor. Data analysis was carried out by Design Expert12 application. Characterization of the optimal formula included physicochemical evaluation, globule size analysis, zeta potential, polydispersity index, entrapment efficiency, Transition Electron Microscopy (TEM) analysis, and FTIR analysis. Result(s): The optimal formula consisted of quercetin: vitamin C: lecithin: cholesterol ratio of 1: 1: 1.046: 0.105 mol;stirring speed 763.986 rpm;stirring time of 59 min, at temperature 51.73 degreeC which produced 59.26 nm average globule size, PDI value 0.66;zeta potential value-35.93+/-0.95 mV and average SPAN value 0.61. This formulation showed entrapment efficiency of quercetin 91.69+/-0.18 % and vitamin C 90.82+/-0.13 %. The TEM and FITR analysis showed the morphological of the globules and interactions between the drugs, soy lecithin, and cholesterol to form nano-phytosomes. Conclusion(s): The conditions to obtain the optimal formula for quercetin vitamin C nano-phytosome consisted of quercetin: vitamin C: lecithin: cholesterol ratio of 1: 1: 1.046: 0.105 mol;stirring speed 763.986 rpm;stirring time of 59 min, and at temperature 51.73 degreeC.Copyright © 2023 The Authors.

4.
Proceedings of SPIE - The International Society for Optical Engineering ; 12611, 2023.
Article in English | Scopus | ID: covidwho-20238796

ABSTRACT

The 6XS6 is the structure of the SARS-CoV-2 spike protein. The physiological role of the spike protein is relative to the respiratory syndrome coronavirus and has a stronger infect on the human body than the ancestor virus. The purification of the 6XS6 is in the homo sapiens cell by the affinity chromatography, PBS supplemented and Size Exclusion chromatography. At last, using the Cryo-Electron Microscopy to see the structure. This paper is using the D614G mutation to illustrate the structure of the 6XS6. The N-terminal domain and C-terminal domain of the 6XS6 protein are ALA27 and VAL1137. Furthermore, the mutation doesn't have the hydrogen bond because the Asp614 is substituted by the Gly614, and the molecule that interacts with the Ala 647 may occur. While the 6XS6 structure has lots of non-covalent and disulfide bonds. Comparing the structure of the 6XS6 and 6VXX, both are glycoproteins, have three monomers, have two subunits, and have the same category of expression and classification. The different conformations of the two structures can affect the binding ability with the ACE2. This paper can help the researchers to further understand the structure and function of the 6XS6 which can be used in future experiments. © 2023 SPIE.

5.
Cytotherapy ; 25(6 Supplement):S109, 2023.
Article in English | EMBASE | ID: covidwho-20236255

ABSTRACT

Background & Aim: Liposomes are spherical-shaped vesicles composed of one or more lipid bilayers. The ability of liposomes to encapsulate hydro- or lipophilic drugs allowed these vesicles to become a useful drug delivery system. Natural cell membranes, such as Bioxome, have newly emerged as new source of materials for molecular delivery systems. Bioxome are biocompatible and GMP-compliant liposome-like membrane that can be produced from more than 200 cell types. Bioxome self-assemble, with in-process self-loading capacity and can be loaded with a variety of therapeutic compounds. Once close to the target tissue, Bioxome naturally fuse with the cell membrane and release the inner compound. Orgenesis is interested in evaluating the potential of Bioxome as new drug delivery system for treatment of several diseases, including skin repair, local tumour or COVID19. Methods, Results & Conclusion(s): Bioxome were obtained from adipose- derived Mesenchymal Stem Cells, with a process of organic- solvent lipid extraction, followed by lyophilization and sonication assemblage. During the sonication process, Bioxome were charged or not with several cargos. Size distribution of empty Bioxome was detected by Particle Size Analyzer (NanoSight). Electron Microscopy (EM) was performed to assess Bioxome morphology. Lipid content was evaluated by electrospray ionization system. Dose response in vitro test on human lung fibroblasts treated or not with Bioxome encapsulating a specific cargo (API) against COVID19 were performed. NanoSight analysis showed that nanoparticle size in Bioxome samples ranged between 170+/-50 nm, with a concentration ranging between 109-1010+/-106 particles/mL. EM clearly showed the double phospholipid layers that composes the Bioxome. Stability study demonstrated that Bioxome are stable in size and concentration up to 90 days at +4Cdegree or even at RT. No change in size between encapsulated Bioxome with small size (~340 Da) cargo vs empty Bioxome was observed up to 30 days storage. Lipidomic analysis approach revealed that the yield of lipids and their composition are satisfactory for a therapeutic product using Bioxome. Lastly, in the in vitro model of COVID19, Bioxome encapsulating API effectively saved cells from death (20x vs untreated cells) and at lower doses of API than these of non-encapsulated cargo (0.005 microM vs 0.1 microM). Bioxome seems to be an excellent candidate for liposome mimetic tool as drug delivery system for targeting specific organs and diseases treatment.Copyright © 2023 International Society for Cell & Gene Therapy

6.
Fresenius Environmental Bulletin ; 32(5):2146, 2023.
Article in English | ProQuest Central | ID: covidwho-20233781

ABSTRACT

Determination of the filtration efficiency (even to nanosize) of several textiles was carried out during emergency time at the beginning of the COVID-19 pandemic lockdown in order to perform a fast screening of materials candidate for facial masks. At this purpose, a double strategy was adopted in Milan: scanning electron microscopy investigation and a classical filtration test of ambient aerosol. The latter was used in order to mimic as much as possible the capability to filter ambient aerosol that might contain COVID-19. The two methods were compared to investigate their capability to identify only textiles characterized by a filtration efficiency higher than 90% (thus candidate for facial mask production). Results showed filtration efficiency above 90% for promising candidate textiles as well as poor filtration capabilities (below 60%) of other textiles, enabling a fast screening of the materials from different Italian factories.

7.
J Biomol Struct Dyn ; : 1-13, 2022 May 31.
Article in English | MEDLINE | ID: covidwho-20243817

ABSTRACT

Achillea millefolium (Yarrow) is a herbaceous plant of Greek origin noted to treat pneumonia, common cold, cough, and other respiratory disorders. The flowers and leaves are the core part used to prepare herbal tea that gains the world's recognition as medicinal tea. Coronavirus disease is spreading across the globe, and numerous approaches are lodged to treat virus-induced lung inflammation. Here, we used the network pharmacology, metabolite analysis, docking and molecular simulation and MM-PBSA analysis to comprehend the biochemical basis of the health-boosting impact of Yarrow tea. Next, we performed the microscopic and dynamic light scattering (DLS) analysis of yarrow-treated ChAdOx1 nCoV-19 to evaluate the virucidal activity of the Yarrow. The present study investigates the druggability, metabolites and potential interaction of the title tea with genes associated with Covid-19-induced pathogenesis. Towards this, 1022 gene hits were obtained, 30 are mutually shared. Network Pharmacology and microarray gene expression analysis find the connection of PTGS2 in relieving the virus-induced inflammation. Yarrow constituents Luteolin may inhibit or down-regulate the Cyclooxygenase II (PTGS2), a plausible mechanism underlying the Yarrow's anti-inflammatory actions. Further, the Yarrow's virucidal activity was assessed towards Transmission Electron Microscopic (TEM). The Yarrow treated SARS-nCoV-2 cell exhibits the disintegration of the virus membrane. This work provides a scientific basis for further elucidating the mechanism underlying Achillea millefolium's antiviral and anti-inflammatory properties.

8.
Ultrastruct Pathol ; : 1-6, 2023 Jun 12.
Article in English | MEDLINE | ID: covidwho-20241445

ABSTRACT

Recent studies indicate that cilia impairment, accompanied by the axonema loss and the basal body misorientation, is a common pathological feature of SARS-CoV-2-infected bronchial epithelial cells. However, these data were obtained using either cultured cells, or animal models, while in human postmortem material, cilia impairment has not been described yet. Here, we present direct observation of cilia impairment in SARS-CoV-2-infected bronchial epithelial cells using transmission electron microscopy of the autopsy material. We were able to observe only single infected cells with cilia impairment in one of twelve examined specimens, while the large number of desquamated bronchial epithelial cells with undisturbed ciliary layer was visible in the bronchial lumens. Thus, it seems that in the lungs of infected patients, the majority of bronchial cells do not die as a direct result of infection, which may explain the rarity of this finding in the autopsy material.

9.
Free Neuropathol ; 22021 Jan.
Article in English | MEDLINE | ID: covidwho-20239279

ABSTRACT

This review highlights ten important advances in the neuromuscular disease field that were first reported in 2020. The overarching topics include (i) advances in understanding of fundamental neuromuscular biology; (ii) new / emerging diseases; (iii) advances in understanding of disease etiology and pathogenesis; (iv) diagnostic advances; and (v) therapeutic advances. Within this broad framework, the individual disease entities that are discussed in more detail include neuromuscular complications of COVID-19, supervillin-deficient myopathy, 19p13.3-linked distal myopathy, vasculitic neuropathy due to eosinophilic granulomatosis with polyangiitis, spinal muscular atrophy, idiopathic inflammatory myopathies, and transthyretin neuropathy/myopathy. In addition, the review highlights several other advances (such as the revised view of the myofibrillar architecture, new insights into molecular and cellular mechanisms of muscle regeneration, and development of new electron microscopy tools) that will likely have a significant impact on the overall neuromuscular disease field going forward.

10.
Free Neuropathol ; 22021 Jan.
Article in English | MEDLINE | ID: covidwho-20234442

ABSTRACT

This article reviews a collection of manuscripts in the field of neurodegenerative disease chosen from what are considered by the author to be among the 10 most important and potentially impactful topics or research trends of 2020 relevant to the field of experimental and diagnostic neuropathology. A deliberate effort was made to provide balance among disease categories covered. The result is a varied selection that includes not just individual papers but also research topics and trends. The association of COVID-19 with longer-term neurological symptoms has launched a research trend fueled by speculation that the SARS-CoV-2 might trigger neurodegenerative changes. The onslaught of transcriptomic studies has begun to give way to proteomics, with three transformative studies published examining glial contributions to Alzheimer disease, cerebral atherosclerosis in cognitive decline, and the complex sequence of post-translational modifications of the tau protein. Plasma biomarkers for Alzheimer disease have continued to make rapid advances, especially around highly sensitive assays capable of detecting different forms of abnormal hyperphosphorylated tau in peripheral blood. Two studies using cryo-electron microscopy showed the power of the approach by continuing to elucidate the diversity of filamentous tau inclusions, and a third study gave the first glimpse of α-synuclein aggregates at near atomic resolution. Another study continued to delineate how different α-synuclein conformers ("strains") target specific brain regions and lead to neurodegeneration. In Huntington's disease, we saw compelling molecular data showing how cells adapt to endoplasmic reticulum stress through the unfolded protein response. Finally, the role of astrocytes in chronic traumatic encephalopathy has emerged as a critical area of interest.

11.
QRB Discovery ; 3:446-452, 2022.
Article in English | EMBASE | ID: covidwho-2325245

ABSTRACT

Chapter 1: COVID-19 pathogenesis poses paradoxes difficult to explain with traditional physiology. For instance, since type II pneumocytes are considered the primary cellular target of SARS-CoV-2;as these produce pulmonary surfactant (PS), the possibility that insufficient PS plays a role in COVID-19 pathogenesis has been raised. However, the opposite of predicted high alveolar surface tension is found in many early COVID-19 patients: paradoxically normal lung volumes and high compliance occur, with profound hypoxemia. That 'COVID anomaly' was quickly rationalised by invoking traditional vascular mechanisms-mainly because of surprisingly preserved alveolar surface in early hypoxemic cases. However, that quick rejection of alveolar damage only occurred because the actual mechanism of gas exchange has long been presumed to be non-problematic, due to diffusion through the alveolar surface. On the contrary, we provide physical chemical evidence that gas exchange occurs by an process of expansion and contraction of the three-dimensional structures of PS and its associated proteins. This view explains anomalous observations from the level of cryo-TEM to whole individuals. It encompasses results from premature infants to the deepest diving seals. Once understood, the COVID anomaly dissolves and is straightforwardly explained as covert viral damage to the 3D structure of PS, with direct treatment implications. As a natural experiment, the SARS-CoV-2 virus itself has helped us to simplify and clarify not only the nature of dyspnea and its relationship to pulmonary compliance, but also the fine detail of the PS including such features as water channels which had heretofore been entirely unexpected.Copyright ©

12.
Journal of the Textile Institute ; 2023.
Article in English | Scopus | ID: covidwho-2320876

ABSTRACT

The global COVID-19 pandemic has triggered a huge demand for the protective nonwovens. However, the main raw material of nonwovens comes from petroleum, and the massive consumption of petroleum-based polymers brings great pressure to ecosystem. Therefore, it is significant to develop biodegradable protective barrier products. In this work, a polylactic-based composite (a tri-layer nonwovens composed of spunbond, meltblown and spunbond, SMS) was prepared and applied for protective apparel. The surface morphology and chemical changes of the fibers were characterized and analyzed by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and energy dispersive spectroscopy (EDS). The liquid contact angle and permeability, breathability and moisture permeability, frictional charge and mechanical strength of the samples were evaluated and compared. The samples degradability was also recorded. The results demonstrate that the optimum formula for anti-fouling treatment on SMS is F-30. The treated fabric possesses superior liquid repellency and anti-permeability, with contact angles of water and alcohol at 128° and 115° respectively, while the alcohol repellent grade reaches level 7. The treated sample has less strength loss but exhibits favorable breathability, moisture permeability and anti-static properties, which can meet the requirements of protective apparels. After fluorine resin coating, the composite still provide excellent degradation performance, and the weight loss rate reaches more than 80% after 10 days water degradation. These results provide new insights for the application of PLA-based SMS in biodegradable protective apparel. © 2023 The Textile Institute.

13.
Journal of Physical Chemistry C ; 2023.
Article in English | Scopus | ID: covidwho-2318837

ABSTRACT

The integrative study of the pharmacokinetics and dynamics of a drug has been of great research interest due to its authentic description of the biomedical and clinical pros and cons. Acetaminophen (N-acetyl-4-aminophenol, AcAP) is a well-known analgesic having a high therapeutic value, including the Covid-19 treatment. However, an overdose of the drug (>200 mg/kg of men) can lead to liver toxicity. An intermediate, N-acetyl-p-benzoquinone imine (NAPQI), metabolite formation has been found to be responsible for the toxicity. For the detection of NAPQI, several ex situ techniques based on electrochemical methods followed by nuclear magnetic resonance, high-performance liquid chromatography, and LC-MS were stated. For the first time, we report an in situ electrochemical approach for AcAP oxidation and NAPQI intermediate (Mw = 149.1 g mol-1) trapping on a graphitic nanomaterial, carbon black (CB)-modified electrode in pH 7 phosphate buffer solution (CB@NAPQI). The NAPQI-trapped electrode exhibited a surface-confined redox peak at E°′ = 0.350 ± 0.05 V vs Ag/AgCl with a surface excess value of 3.52 n mol cm-2. Physicochemical characterizations by scanning electron microscopy, Raman, FTIR, and in situ electrochemical quartz crystal microbalance (EQCM) techniques supported the entrapment of the molecular species. Furthermore, the scanning electrochemical microscopy (SECM) technique has been adopted for surface-mapping the true active site of the NAPQI-trapped electrode. As a biomimetic study, the mediated oxidation reaction of NADH by CB@NAPQI was demonstrated, and the mechanistic and quantitative aspects were studied using cyclic voltammetry, rotating disc electrode, amperometry, and flow injection analysis techniques. © 2023 American Chemical Society.

14.
Topics in Antiviral Medicine ; 31(2):215, 2023.
Article in English | EMBASE | ID: covidwho-2318132

ABSTRACT

Background: Different viruses employ similar pathways for replication, revealing key intracellular hotspots to target with host-directed therapies and achieve a broad-spectrum antiviral activity. Plitidepsin is a clinically approved antitumoral agent that blocks the elongation factor eEF1A required for protein translation. This drug counteracts SARS-CoV-2 replication and shows a favorable safety profile in COVID-19 patients. Yet, the precise antiviral mechanism of action of plitidepsin remains unknown. Method(s): Here we used a deep quantitative proteomic analysis to measure the impact of plitidepsin on the proteome of SARS-CoV-2-infected Vero E6 cells. This was complemented with transmission electron microscopy assays, which unraveled the subcellular and morphological changes associated to plitidepsin treatment. In addition, we performed functional in vitro assays to dissect the antiviral activity of plitidepsin against SARS-CoV-2 and other viruses. Result(s): We found that this drug inhibited the synthesis of all SARS-CoV-2 proteins in a dose-dependent manner. These included the R1AB polyproteins, which facilitate the synthesis of non-structural proteins involved in the formation of double membrane vesicles (DMV) required for viral replication. Plitidepsin reduced DMV formation and the morphogenesis of new viruses, having a greater impact on viral than on host proteins. Less than 14% of the cellular proteome was significantly affected by plitidepsin, inducing the up-regulation of key molecules associated with protein biosynthesis, such as the translation initiation factors eIF4A2 and eIF2S3. Therefore, plitidepsin induced a compensatory state that rescued protein translation. This proteostatic response explains how cells preserve the cellular proteome after treatment with a translation inhibitor such as plitidepsin. In addition, it suggests that plitidepsin could inhibit other RNA-dependent and non-integrated DNA viruses, as we confirmed in vitro using Zika virus, Hepatitis C virus replicon and Herpes simplex virus. However, the compensatory proteostasis induced by plitidespin also explains why this drug failed to inhibit the replication of integrated DNA proviruses such as HIV-1. Conclusion(s): Unraveling the mechanism of action of host-directed therapies like plitidepsin is imperative to define the indications and antiviral profile of these compounds. This knowledge will be key to develop broad-spectrum treatments and have them ready to deploy when future pandemic viruses break through.

15.
Journal of Investigative Medicine ; 69(4):927-928, 2021.
Article in English | EMBASE | ID: covidwho-2317867

ABSTRACT

Purpose of study Proposal for an oral (or if required, parenteral) COVID-19 vaccination based upon this described technology. Investigational theory under study for the past 9 months of COVID-19 growing season. Coronavirus can attack and infect plant species. It was found that SARS-CoV-2 can infect various plant species. Others have found plants, for example tobacco as a good growth medium for Coronavirus and SARS-CoV-2. This current study has found various plants species infected with SARS-CoV-2 by rPCR. As the plants were located beside a well used hiking trail for humans, and were infected along the trail including various species with SARS-CoV-2, hypothesized that human airborne contact had caused infection in the bordering plants. Humans were observed to be coughing while walking on the trail, and were not wearing masks. The plant leaves developed small circular colonies of the virus, which became self-limited at several millimeters in diameter. All of the plants were clear of these lesions before the COVID-19 Pandemic. The plants 'immune' system produced antiviral agents, including lectins which limited the growth of the colonies and prevent death of the leaf and whole plant. The fungal cultures of the 'spots' were negative. The rPCR of all spots tested in the present series was positive for SARS-CoV-2. Hypothesis, that self-augmentation of the virus occurred by the natural culturing in plant leaves that produce antiviral agents as part of their 'immune system.' Hypothesis, a symbiotic type relationship developed between the plant using its chemical immune system, and the virus allowed to replicate in an augmented fashion to allow both the virus and the host to survive and grow. As the top candidates for the oral vaccine are nontoxic, hypothesis involves the maceration of the infected leaves, mixing with a nontoxic adjuvant and flavoring to promote assimilation and palatability, with the proposed route of entry being mastication, thus exposing the oral-nasal mucosa to the vaccine, with the probable best of immunity to usual exposure to the SARS-CoV-2 virus, that is the oral-nasal mucosal and upper airway route. As many types of animals are now infected with SARS-CoV-2, it is further hypothesized that this oral vaccine could also be mass produced to add to various animals by feedstock and oral route. Methods used Hypotheses formed through observations. Testing of observations by pPCR, viral cell culture, fungal culture, light and electron microscopy. Summary of results pPCR SARS-CoV-2 positive, cell culture 'lysis experiment' positive, EM and light microscopy positive, fungal culture negative. Conclusions TABLE OF HYPOTHESES AND STUDY RESULTS (HYPOTHETICAL, OBSERVED, PROVEN) 1. The first hypothesis that the virus is attenuated by the plant, using its innate chemical immune system. Similarly, Pasteur used chemical such as phenol to attenuate viruses for wome of the first successful vaccines. Observed. 2. Hypothesis, the plants 'immune' system produced antiviral agents, including lectins, flavonoids, and others, which limited the growth of the colonies and prevent death of the leaf and whole plant. Proven. 3. Hypothesis is that the nontoxic plants, such as Vine Maple sp.(Acer cincinatum), could be used to produce and oral plant attenuated vaccine. Hypothesis. 4. Hypothesis involves the maceration of the infected leaves, mixing with a nontoxic adjuvant and flavoring to promote assimilation and palatability, with the proposed route of entry being mastication, thus exposing the oral-nasal mucosa to the vaccine, with the probable best of immunity to usual exposure to the SARS-CoV-2 virus, that is the oral-nasal mucosa, upper airway. (Figure Presented).

16.
Fujian Journal of Agricultural Sciences ; 37(11):1388-1393, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-2316627

ABSTRACT

Objective: Epidemiology and genetic variations of the infectious bronchitis virus(IBV) in Fujian province were studied. Method: Two strains of virus isolated from the diseased chickens in Fujian in 2021 were identified by chicken embryo pathogenicity test, electron microscope observation, and RT-PCR. S1 genes of the isolates were cloned, sequenced, and analyzed using biological software. Result: The two IBV strains were code named FJ-NP01 and FJ-FZ01. The full length of S1 of FJ-NP01 was 1 629 nt encoding 543 amino acids, and that of FJ-FZ01, 1 620 nt encoding 540 amino acids. The S1 gene cleavage site of FJ-FZ01 was HRRRR, same as all reference strains of genotype I branch;while that of FJ-NP01 HRRKR differed from the reported site of IBV isolated from genotype IV but same as that of TC07-2 reference strain of genotype VI. The homology of nucleotide and amino acid between the two isolates was 83.2% and 79.6%, respectively, but merely 75.7%-76.3%and 77.1%-83.5% with the Mass-type conventional vaccines H120 and H52, respectively. Further analysis showed that FJ-NP01was from a recombination event between CK CH GD LZ12-4 and L-1148, the homology of nucleotide acid between 1438-1506 nt of FJ-NP01 with CK CH GD LZ12-4 was 97%, and 95.9% between the other nucleotide acid of S1 gene with L-1148. Conclusion: It appeared that the IBV epidemic experienced in the province was complex in nature and that the existing Mass vaccines would not provide sufficient immune protection to deter the spread.

17.
Journal of Biological Chemistry ; 299(3 Supplement):S388, 2023.
Article in English | EMBASE | ID: covidwho-2315101

ABSTRACT

SARS-CoV-2 Spike harbors glycans which function as ligands for lectins. Therefore, it should be possible to exploit lectins to target SARS-CoV-2 and inhibit cellular entry by binding glycans on the Spike protein. Burkholderia oklahomensis agglutinin (BOA) is an antiviral lectin that interacts with viral glycoproteins via N-linked high mannose glycans. Here, we show that BOA binds to the Spike protein and is a potent inhibitor of SARS-CoV-2 viral entry at nanomolar concentrations. Using a variety of biophysical tools such as SEC chromatography, dynamics light scattering, fluorescence binding assays, and electron microscopy, we demonstrate that the interaction is avidity driven and that BOA crosslinks the Spike protein into soluble aggregates. Furthermore, using virus neutralization assays, we demonstrate that BOA effectively inhibits all tested variants of concern as well as SARS-CoV-1, establishing that glycan-targeting molecules have the potential to be pan-coronavirus inhibitors.Copyright © 2023 The American Society for Biochemistry and Molecular Biology, Inc.

18.
Journal of Cystic Fibrosis ; 21(Supplement 2):S348-S349, 2022.
Article in English | EMBASE | ID: covidwho-2314162

ABSTRACT

Background: Polymorphonuclear neutrophils (PMNs) recruited to the airway lumen in cystic fibrosis (CF) undergo a rapid transcriptional program, resulting in exocytosis of granules and inhibition of bacterial killing. As a result, chronic infection, feed-forward inflammation, and structural tissue damage occur. Because CF airway PMNs are also highly pinocytic, we hypothesized that we could deliver protein- and ribonucleic acid (RNA)-based therapies to modulate their function to benefit patients. We elected to use extracellular vesicles (EVs) as a delivery vector because they are highly customizable, and airway PMNs have previously been shown by our group to process and use their cargo efficiently [1]. Furthermore, our prior work on CF airway PMNs [2] led to identification of the long noncoding RNA MALAT1, the transcription factor Ehf, and the histone deacetylase/long-chain fatty deacylase HDAC11 as potential targets to modulate CF airway PMN dysfunction. Method(s): H441 human club epithelial cells were chosen for EV production because they efficiently communicate with lung-recruited primary human PMNs [1]. Relevant constructs were cloned into an expression plasmid downstream of a constitutive cytomegalovirus or U6 promoter with an additional puromycin selection cassette. EVs were generated in serumdepleted media and purified by differential centrifugation. Quality and concentration of EVs was determined by electron microscopy and nanoparticle tracking analysis and cargo content by western blot (protein) or qualitative reverse transcription polymerase chain reaction (RNA). Enhanced green fluorescent protein and messenger ribonucleic acid (mRNA) were used as controls. To test delivery to primary human PMNs, generated EVs were applied in the apical fluid of an airway transmigration model [2]. PMN activation was assessed by flow cytometry, and bacterial (PA01 and Staphylococcus aureus 8325-4) killing and viral (influenza Avirus [IAV] H1N1/PR/8/34;SARS-CoV-2/Washington) clearance assays were conducted. Result(s): To package protein, we used EV-loading motifs such as the tetraspanin CD63, Basp1 amino acids 1-9, and the palmitoylation signal of Lyn kinase. To load mRNA, a C'D box motif recognized by the RNA-binding protein L7Ae was included in the 3' untranslated region of the expressed RNA, and CD63-L7Ae was co-expressed. Airway-recruited PMNs treated with EVs containing small interfering RNAs against MALAT1 or HDAC11 showed greater ability to clear bacteria. Conversely, PMNs treated with constructs encasing MALAT1 or HDAC11 efficiently cleared IAV and SARSCoV- 2. PMNs expressing Ehf showed greater clearance of bacteria and viruses. Conclusion(s): Our findings suggest mutually exclusive roles of MALAT-1 and HDAC11 in regulating bacterial and viral clearance by airway-recruited PMNs. Expression of Ehf in airway PMNs may be a pathogen-agnostic approach to enhancing clearance by airway-recruited PMNs. Overall, our study brings proof-of-concept data for therapeutic RNA/protein transfer to airway-recruited PMNs in CF and other lung diseases and for use of EVs as a promising method for cargo delivery to these cells. It is our expectation that, by treating the immune compartment of CF airway disease, pathogentherapies, such as antibiotics will be more effective, and epithelial-targeted therapies, such as CFTR modulators, will have greater penetrance into the cell types of interest.Copyright © 2022, European Cystic Fibrosis Society. All rights reserved

19.
Clinical Chemistry and Laboratory Medicine: CCLM ; 61(s1):s1568-s1587, 2023.
Article in English | ProQuest Central | ID: covidwho-2312068
20.
Clinical and Experimental Rheumatology ; 41(2):421, 2023.
Article in English | EMBASE | ID: covidwho-2291547

ABSTRACT

An association between SARS-CoV-2 infection and myopathy was suspected early in the pandemic: patients with severe COVID-19 showed increased levels of creatine kinase that could not be solely explained by cardiac affection. On the other hand, myalgia and muscle weakness are frequent symptoms in patients with mild or moderate COVID-19 - as with many other viral infections -and subsets of infected patients report persistent muscular weakness and fatigue even months after the initial infection. We performed a case-control autopsy comparing patients with severe COVID-19 to patients with other critical illnesses and assessed inflammation of skeletal muscle tissue by quantification of immune cell infiltrates, expression of major histocompatibility complex (MHC) class I and class II antigens on the sarcolemma. Relevant expression of MHC class I antigens on the sarcolemma was present in 23 of 42 specimens from patients with COVID-19 (55%) and upregulation of MHC class II antigens in 7 of 42 specimens from patients with COVID-19 (17%), but neither were found in any of the controls. In a subset of patients, MHC class I and MHC class II expression showed a clear perifascicular pattern. Signs of degenerating and necrotic fibers could also be found, however there was no statistically significant difference in the frequency of occurrence when compared to non-COVID-19 critically ill patients. We interpreted this as non-specific signs of muscular damage in critically ill patients. Numbers of macrophages, lymphocytes and natural killer cells were found to be increased in muscles from patients with COVID-19. Interestingly, no relevant expression of MxA on myofibers could be found by immunohistochemistry, but in some cases, expression of MxA was found on capillaries. Ultrastructural analysis of selected muscles with perifascicular MHC-expression did not show tubuloreticular inclusions. However, capillaries of the analyzed samples showed basement membrane alterations and signs of ongoing regenerative processes. In addition, we evaluated inflammation of cardiac muscles by quantification of immune cell infiltrates in the same patients, and found that skeletal muscles showed more inflammatory features than cardiac muscles. Moreover, inflammation was most pronounced in patients with COVID-19 with chronic courses. In some muscle specimens, SARS-CoV-2 RNA was detected by reverse transcription-polymerase chain reaction, but no evidence for a direct viral infection of myofibers was found by immunohistochemistry or electron microscopy. This suggests that SARS-CoV-2 may be associated with a postinfectious, immune-mediated myopathy.

SELECTION OF CITATIONS
SEARCH DETAIL